If you’re the kind of hands-on race director who dolisting-caesn’t shy away from a challenge, you may have considered building your own RFID race timing system.

Building a race timing system from off-the-shelf components is a lot easier than you thingk. And it can give you great control over your timing costs as well as provide a stepping stone into race timing.

In the rest of this article you’ll find everything you need to start your race timing career, from understanding your options and choosing the right tools for the job to thinking through common race timing challenges and sorting out your backup procedures.

Starting at ground level…

How does RFID work?

RFID (short for Radio-Frequency IDentification) uses radio technology to identify and track objects through the use of radio tags.

The basics of an RFID tracking system go something like this:

  1. Pick an object you want to track (e.g. a runner)
  2. Take an RFID tag and program on it information about the object you want to track (e.g. the runner’s bib number)
  3. Attach the tag to the object you want to track
  4. Use an RFID reader to scan the tag and read back the information you have programmed on it

RFID technology was originally developed for industrial applications, where it was used to provide easy tracking of objects as they moved through warehouses and manufacturing plants. It was during the 90s that RFID was first adapted for use in mass-participation sports.

The very first RFID race timing systems were like any other new technology: very expensive and – let’s face it – quite rubbish. But progress has been swift and RFID has come a very very long way.

Today RFID timing is considered the golden standard for race timing and can be relied on to provide near-100% accurate results for even the largest races. And it has become affordable enough to bring it within reach of most every race out there.

The different types of RFID

There are many different types of RFID frequencies and technologies in use commercially, and not all are suitable for race timing.

Low Frequency (LF)

Low frequency RFID uses frequencies in the 125-134kHz range to identify tags in close proximity (usually less than 10 centimetres) to the tag reader. LF RFID can only handle low read rates, making it unsuitable for most race timing setups. It’s widely used in industrial applications and pet IDs, where scanning rates are low and objects are scanned through contact or with the use of handheld RFID readers.

High Frequency (HF)

High frequency RFID uses frequencies in the MHz range. HF has a longer range that its LF counterpart (typically up to a meter or so), can handle a higher read rate and be used to transmit larger data payloads. However, this is still not enough for most race timing applications.

Ultra-High Frequency (UHF)

Ultra-high frequencies are the most widely adopted in race chip timing systems. UHF RFID systems use frequencies in the 860-960 MHz range and can be used to detect as many as 1,000+ tags per second as far as 10-15 meters from the reader, making them ideal for wide and busy finish lines where several tagged participants may be crossing in a short space of time.

RFID race timing systems - NFC vs RFID tags

Two RFID tags by Smartrac: a UHF DogBone Monza R6 for use on race bibs (left) vs an NFC CIRCUS that can be read by smartphones (right)

NFC vs RFID

Although technically a subset of RFID, NFC technology (short for Near Field Communication) deserves special mention amongst RFID technologies.

NFC sits in the LF/HF part of the RFID spectrum and has been increasingly adopted for timing and runner identification in trail and ultra races. Part of the reason why is the low cost of wearable NFC tags (these tags use similar NFC chips to the one you’ll find in your contactless credit card), but also the in-built NFC functionality available in Android smartphones, which essentially can turn any Android phone into a NFC tag reader.

For more information on NFC and its use in race timing, check out this very informative article by Beyond Marathon race director, Richard Weremiuk.

Essential components of an RFID race timing system

Building your own RFID race timing system may seem daunting, but there really are only a few core pieces of equipment you’ll ever need.

You can build a system capable of timing even the largest of races with just a few thousand dollars – or less, if you shop around for second-hand components. Here’s what you will need:

RFID tags

RFID tags are worn or carried by participants and are used to identify each one uniquely at timing points. Tags are made up of two components: 1) an RFID chip which is programmed with information about the carrier of the tag, e.g. their bib number, 2) an antenna which enables the connection with the RFID reader.

RFID tags, like the super popular Smartrac DogBone, can be attached on participants’ bibs, worn on the shoe or, for bulkier active tags, strapped around the ankle. All of these can be equally effective, but some make better choices than others depending on the type of event you’re timing and the antenna setup you plan to use. We’ll take a closer look at the different choices for RFID tags later in the article.

RFID tag readers

Impinj R420 RFID reader

The Impinj R420 4-antenna RFID reader

The tag reader is the “brain” of the chip timing system. It uses radio antennas to detect RFID tags, decode the information stored on them (processing and combining multiple readings where necessary) and transmit that information to the race timing software.

RFID readers can be handheld, mountable or desktop and vary significantly in cost depending on the number of antennas they can accommodate (usually 2, 4 or 8), their read rate, connectivity options (ethernet, Bluetooth, Wi-Fi) and other specifications.

Both the Impinj R420 and Zebra FX9600 (formerly Motorola) are very popular choices of race timing readers in the $1,000 – $2,000 range. They both have 4 antenna ports and with the right antenna setup will give you all the power you need to time any race, however large.

RFID antennas

The job of antennas in an RFID timing system is to detect RFID tags and transmit data from the tags to the tag reader. Most antennas are passive, that is, they not only connect to the RFID reader but are also powered by it.

There are three types of RFID antennas commonly used in race timing systems:

Ground/floor antennas

Ground antennas have been used in race timing systems since forever and are the antenna of choice for major marathons and very large events.

Ground antennas are placed across the finish, start or intermediate timing line. The mat or plastic cover shields the antenna coils underneath which create an upwards radio field facing incoming tags.

Ground antennas work great with both shoe tags and bib tags and are usually foldable and can be extended to any width by connecting multiple antennas together.

ground RFID antenna vs side RFID antenna vs aerial RFID antenna

Examples of RFID antennas by Macsha: foldable floor antenna (left), upright side antennas (centre) and a pair of aerial antennas (right)

Side antennas

Side antennas are upright antennas usually positioned in pairs facing each other at either side of the timing line. They create a fairly narrow wedge-shaped field and are oriented slightly outwards facing incoming tags just as they cross the timing line.

Side antennas, particularly the square variety like the Impinj LHCP or slightly cheaper MTI, are by far the most versatile type of RFID antenna. They can be used in all types of events and are the top choice for high-speed events, like sportives and road cycling events, where even low-profile ground antennas can be dangerous.

Overhead antennas

Overhead or aerial antennas can be used in conjunction with side antennas on the top of finish-line gantries to add a radio “curtain” to the side antennas’ radio “wall”. They’re typically used to beef up read rates in high-speed races, like road cycling and motorsport events.

Race timing software

Making sense of RFID data captured by the reader and translating that into neat race times is the job of specialized race timing software.

The important thing to keep in mind when buying timing software is that not all software will work with every RFID reader out there. Most software will work either with a dedicated hardware setup or a select list of readers, usually from the bigger manufacturers like Impinj, Zebra, Alien etc.

If you feel adventurous and would consider developing your own race timing software, make sure to check whether the manufacturer of the RFID reader of your choice offers a software development kit (SDK) to help streamline the process.

Browse Race Timing Software

Cables

Last but not least in your RFID timing system build, you’ll need cables to connect your antennas to your reader (and your reader to your laptop, but those are fairly standard Ethernet cables).

The importance of picking quality cables is easy to overlook. Seeing as you’ll be likely operating outdoors and moving things around, you should consider investing in durable, insulated cables that can withstand whatever the weather may throw at you.

Getting the length of your cables rights is also important. You don’t want to have them too long to avoid the risk of accidents and the headache of transport, but definitely long enough to be able to reach your antennas wherever you choose to place them.

Popular add-ons for RFID race timing systems

While not essential, there are a few more items you could add to your DIY chip timing system. Below we list some of the more popular race timing add-ons.

Results Kiosk

A results kiosk usually takes the form of a touchscreen box with a ticker tape printer on the side where participants can walk up to and look up their finish times after the race. Results kiosks are becoming very popular with racers and would be a good investment to make for any aspiring race timer.

Cameras

Everybody loves a race-day photo, right? Thankfully, with RFID you don’t need a photographer standing by. You can set up a camera that can be connected to your timing software and triggered whenever a participant crosses the finish for that perfect finish line snap. Photos can be tagged and timestamped automatically, saving you the hassle of having to sort photos after the race.

LED display screens

Similar to the kiosk, LED display screens can provide a convenient way for participants and spectators to view race results as they come in. These are less interactive than results kiosks, but can cut back on lines for results, thus providing a good solution for larger races.

Types of RFID Tags

There are a number of different kinds of RFID tags you could use, depending on the type of event you’re planning, your preferences for purchasing and reusing tags, as well as the hardware setup you’ll be using (particularly your choice of antennas).

Disposable vs reusable tags

One of the more important choices you’ll need to make is whether you go with disposable or reusable tags.

There’s three things to consider there:

  1. Tag durability
  2. Logistics, particularly in collecting and re-programming reusable tags
  3. Cost

Reusable tags can be re-programmed for repeat use, which means you will pay the – typically higher – cost of a reusable tag once and be able to use the tags again and again. In contrast, disposable tags, which are cheaper to manufacture, will be distributed to participants or be embedded in a bib never to be used again.

In terms of logistics, throwing a tag away is a lot easier than collecting it. Factor this in in your decision, as having to collect tags at the finish may lead to congestion at your finish area if note managed properly.

Also, keep in mind that disposable tags, being rather flimsy, may not be suitable for use in multi-discipline events or harsher conditions. So for those types of races your choices may be limited to the more expensive reusable options.

Passive vs active tags

Another thing to think about is whether you’ll be using passive or active RFID tags. Your choice of passive vs active is an important one as it’s going to affect every other aspect of your system, from your RFID reader to your antennas.

Active tags use an internal power source built into the tag to transmit data to the RFID reader without having to rely on the reader’s power. The built-in power source makes active tags more versatile than passive tags but shifts a lot of the heavy lifting from the reader to the tag.

Because in active systems the detection and transmission rests on the tags, active systems can be more accurate and be used to transmit data over longer distances. Also, since the reader doesn’t have to do all that much, active tag readers can be much smaller, allowing for the addition of multiple intermediate timing points at a lower cost. All this makes active tags a good choice for multisport and high-speed races.

That said, active tags will be a poor choice for the majority of races. Here’s why:

  • Cost: active tags are considerably more expensive than passive tags, often costing $20 or more for a single tag
  • Bulkiness: active tags are also a lot larger than passive tags, making them more awkward to use by participants
  • Maintenance: not only do active tags need to be reused, they also need to be frequently recharged to keep them functional, making maintenance of your RFID tag inventory a bit of a headache

Passive tags are a lot simpler. They do not have a built-in power source and can weigh as little as 1g. As a result, they can be placed almost anywhere (these are the tags covered by a layer of foam you find fixed at the back of race bibs).

RFID race timing systems - passive vs active RFID tags

Stark contrast: two RFID tags by German manufacturer race|result, a reusable active tag to be worn with a strap (left) vs a disposable passive tag with protective foam attached at the back of a race bib (right)

Passive tags are also a lot cheaper than active tags and can also be reprogrammed for reuse, although they are so cheap that the hassle of collecting them at the end of a race often doesn’t justify the trouble. Depending on the size of the order, prices for passive tags can start from as little as $0.05 per tag.

For the overwhelming majority of races, where tough or muddy terrain is not an issue, passive tags will be the obvious choice. Unless stated explicitly, everything we discuss here will be based on passive RFID systems, which are the most common and most suitable for the majority of events.

How to encode RFID tags

Before we wrap up our discussion on RFID tags, it’s worth briefly discussing an important part of the race timing process: encoding RFID tags.

When you purchase your tags, each tag will come with a unique code, called EPC for Electronic Product Code. Think of the EPC as the tag’s serial number – it provides a unique ID for each tag. This is the number an RFID reader will read from the tag and send to the timing software by default.

In order to keep track of the tag each participant is carrying, so you can provide meaningful results, you have three options:

  1. If you’re buying your tags from a third-party provider, ask them to encode the EPC with each participant’s race number (you will need to provide a list of race numbers). Most tag providers, particularly those providing tags attached to bibs, will be able to do provide the tags pre-programmed with each participant’s race number.
  2. If you are buying tags in bulk that have not been assigned to a race yet (or if you’re reusing tags from a previous race), you can choose to encode race numbers on the EPC of each tag yourself in a process that is kind of like the reverse of tag reading (more on this below).
  3. You can always leave your RFID tags with their original random EPCs, so long as you keep on your timing software or on a spreadsheet a 1-to-1 map of EPC-to-race-number. That way you can turn the EPC-based results your reader will return to a race-number results by matching race numbers to EPC numbers.

If you choose to go with option 2 above – which is a bit of a hassle for larger races – this is how you can manually encode your tags using your RFID reader and timing software:

  1. Bring the tag you want to program within range of your RFID reader (make sure there are no other tags nearby)
  2. Program the race number you want to assign to the tag on your timing software (most software provide this functionality)
  3. Let the reader stamp the race number data to the tag. The tag should now bleep back the race number you encoded.

Timing a race

Now that you know the ins and outs of an RFID chip timing system and its components, it’s time to consider how you would use it to time a race.

Depending on the type and complexity of the race you plan to time, your setup or use of the system may need to be adjusted. Here’s some things to think about:

Point-to-point vs out-and-back vs looped races

Even for a simple 5K race, the configuration of your timing system will vary depending on the course.

Out-and-back courses are the easiest to time, since the start and finish happen at the same place. You can simply set up your antennas and reader at the start, record your participants’ start times and finish times and subtract the two to obtain each participant’s net race time.

Looped races are a bit more complicated, because there can be multiple crossings of the start/finish/lap point. If, for whatever reason, the system misses a crossing, things can get a bit confusing. But with a bit of common sense and some post-race cleanup of your data, you should still be able to provide accurate results.

Point-to-point races is where things get trickier. Here, the start and finish can be separated by anything from a few metres to several kilometres. So you’re left with a few alternatives:

  1. Time the start and move your equipment to the finish. Sounds straightforward but every professional timer would advise against it – all kinds of things can go wrong and you could end up missing finish times.
  2. Use two timing systems, one at the start, the other at the finish. This is the best choice, but of course it doubles your hardware and manpower requirements.
  3. Set up your equipment at the finish and record finish times only.

Option 3 is what a lot of smaller races will choose to do. Which introduces the next dilemma….

Chip time vs gun time

With a single timing system set at the finish line, you can only hope to be able to publish so-called “gun time” results.

Gun time is the official time by which competitions are measured. Named after the time the race gun goes off (real or figurative), signifying the start of the race, gun time results base the race time of each participant on a common start:

Gun time = Time at which a participant crosses the finish – Time when race starts

Gun time is fair, in the sense that it provides a common start time for the race, but since not all participants can be at the front of the pack for the start of the race, it will tend to overestimate the race time for participants starting further back in the field.

RFID race timing systems - chip time vs gun time

Chip time, on the other hand, (also known as net time) is a lot more representative of a participant’s actual race time, as it takes into account the actual time a participant crosses the start line:

Chip time = Time at which a participant crosses the finish – Time at which a participant crosses the start

Chip time will always be lower than the officially published gun time and much more useful for most participants in a race. However, keeping track of start line crossing times requires a start line timing system. Which may mean having to use two systems (one at the start, one at the finish) for point-to-point races.

Using a backup system

Regardless of what system you choose to use and how you set it up, there is a strong possibility your tag read rate will be below 100%.

Dealing with missed times is part and parcel of operating a chip timing system. And most race timers deal with it by using a backup system for recording finish times.

There are a number of approaches in use as backup for chip timing systems:

  • Fully manual backup: This is usually done by two people. One of them uses a stopwatch to record people’s finish times, the other recording their race numbers. When the two are matched up, a backup list of finish times emerges. Here’s the process discussed in a bit more detail by a parkrun race director.
  • Race timing apps: Perhaps the most common backup these days comes in the shape of race timing apps. These apps load your start list and allow you to either punch in or tap in race numbers of people as they cross the finish line. The times are automatically recorded by the app and can be exported or emailed to you.
  • Manual backup systems in timing software: Most chip timing software come with functionality similar to that of race timing apps, so you can use the same software running your main chip timing system to capture crossing times manually, as backup.
  • Cameras: One of the simpler backup systems is using a cheap camera recording at the finish line. Since camera video is timestamped, you can use the footage to pick out missed finish times.

The whole point of a backup system is to provide peace of mind. So do choose one, but don’t go overboard – if properly set up, your main chip timing system will be doing 99%+ of the work.

So there you have it…

Building a DIY chip timing system from the ground up.

Remember: if you have any questions about setting up your timing system or anything else, drop them in the comments below or come share them in our Facebook race directors group. Plenty of people there who’ve done it before and would be happy to help.

 

READ NEXT: 4 Alternatives to Chip Timing →

 

Top Content Delivered To Your Inbox

Get our Race Director News & Tips newsletter full of our best RD tips and industry news!

Thanks for subscribing!

Something went wrong.